Title	Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces
	and relationship to the biocontrol of brown rot caused by Monilinia laxa
Author	B. Guijarro, P. Melgarejo and A. De Cal
Citation	International Journal of Food Microbiology, Volume 126, Issues 1-2, 15 August 2008, Pages
	24-29
Keywords	Biofungicide; Biological agent; Biological control; Formulation; Stone fruit

Abstract

Additives, such as sucrose, d-sorbitol, glycerol, sodium alginate, carboxymethyl cellulose, silica gel, gelatine, non-fat skimmed milk and a commercial adhesive were added to conidia of *Penicillium frequentans* at two different points in the production process of the formulation of this fungus to improve conidial adhesion. Conidial adhesion was estimated as the number of *P. frequentans* conidia (no. conidia cm^{-2}) and colony-forming units of *P. frequentans* per unit area (cfu cm⁻²) that adhered to glass slides or to peach surfaces. The *P. frequentans* conidial concentration had a significant effect on conidial adhesion, while the shelf life of conidia did not have any effect. The highest adhesion of *P. frequentans* conidia to glass slides was observed when conidial concentrations were greater than 10⁶ conidia ml⁻¹. *P. frequentans* conidial adhesion was improved when 1.5% sodium alginate or 1.5% carboxymethyl cellulose were added to the conidial mass obtained after production and before drying by the fluid bed drying process. Conidial adhesion was also enhanced when 1.5% sodium alginate, 1.5% carboxymethyl, or 1.5% gelatine were added to conidia after fluid bed drying. *P. frequentans* formulations with 1.5% sodium alginate or 1.5% carboxymethyl cellulose were added to conidia after fluid bed drying. *P. frequentans* formulations with 1.5% sodium alginate or 1.5% carboxymethyl cellulose were added to conidia after fluid bed drying. *P. frequentans* formulations with 1.5% sodium alginate or 1.5% carboxymethyl cellulose were more effective in reducing brown rot caused by *Monilinia laxa* than dried *P. frequentans* conidia alone. Our results show that additives can improve adhesion of *P. frequentans* conidia to fruit surfaces, resulting in more effective control of brown rot in peaches.