Title	Effects of 1-MCP and exogenous ethylene on fruit ripening and antioxidants in stored
	mango
Author	Baogang Wang, Jianhui Wang, Xiaoyuan Feng, Lin Lin, Yumei Zhao and Weibo Jiang
Citation	Plant Growth Regulation, 57, Number 2, 185-192, 2009
Keywords	1-MCP; Antioxidant; Ethylene; Ethylene synthesis; Mango

Abstract

Mango (*Mangifera indica* L. cv. Tainong) fruits were harvested at the green-mature stage in Hainan and air-freighted to the laboratory at Peking. The fruits were treated with either $1 \mu l 1^{-1} 1$ -MCP or $5 \mu l 1^{-1}$ ethylene for 24 h and stored at 20°C for up to 16 days. 1-MCP maintained fruit firmness, whereas exogenous ethylene decreased fruit firmness. Exogenous ethylene accelerated the increase in ethylene and 1-aminocyclopropane-1-carboxylate (ACC) oxidase, whereas 1-MCP reduced both. Exogenous ethylene stimulated and 1-MCP inhibited the production of H₂O₂ of mango fruit during storage. Ascorbic acid was maintained at a high concentration in 1-MCP-treated fruit but was low in ethylene-treated fruit. 1-MCP inhibited activities of antioxidant enzymes including catalase, superoxide dismutase and ascorbate peroxidase. These results suggest that 1-MCP could play a positive role in regulating the activated oxygen metabolism balance.

http://www.springerlink.com/content/m147v82534253258/fulltext.pdf