Postharvest UV-C irradiation increased the flavonoids and anthocyanins accumulation, phenylpropanoid pathway gene expression, and antioxidant activity in sweet cherries (*Prunus avium* L.)

Qiang Zhang, Wenbo Yang, Jiechao Liu, Hui Liu, Zhenzhen Lv, Chunling Zhang, Dalei Chen and Zhonggao Jiao

Postharvest Biology and Technology, Volume 175, May 2021, 111490

Abstract

Ultraviolet (UV) influences postharvest changes in secondary metabolites of fruit. In this study, sweet cherries were treated with UV-C irradiation (1.05, 2.10, and 4.20 kJ/m²) for different treatment periods, they were stored at room temperature ($25.0 \pm 2.0 \,^{\circ}$ C) for 6 days. The results showed that the total phenolics, flavonoids, and anthocyanins increased in response to UV-C during storage. UPLC-ESI-MS analysis indicated that the individual flavonoids and anthocyanins contents increased, including cyanidin 3-*O*-galactoside, cyanidin *O*-syringic acid, cyanidin 3-*O*-glucoside, pelargonidin 3-*O*-glucoside. Furthermore, UV-C (2.10 kJ/m²) treatment upregulated the enzymes activity and genes expression of phenylpropanoid pathway. Highly significant correlations were found among flavonoids, anthocyanins, phenylalanine ammonia lyase (PAL) and genes expression of *ANS*, *DFR*, *UFGT* (r > 0.6, p < 0.01). These results contribute to illustrating the molecular mechanism of flavonoids and anthocyanins biosynthesis under the UV-C irradiation in sweet cherries and promote the development of postharvest in agriculture.