Design and development of an on-line fluorescence spectroscopy system for detection of aflatoxin in pistachio nuts Qifang Wu and Huirong Xu Postharvest Biology and Technology, Volume 159, January 2020, 111016 ## **Abstract** The on-line detection for aflatoxins contaminated agricultural products using fluorescence spectroscopy method is still a significant challenge due to its weak signal intensity and limitation of detection mode. Thus, the study for real-time aflatoxin B_1 (AFB₁) contaminated pistachios detection by a self-built laser induced fluorescence spectroscopy (LIFS) system coupled with three collection probes was investigated. A total of 600 kernels consisting of two pistachio varieties including "Yaoshengji" and "Wanlong" were artificially contaminated with five different concentrations of AFB₁ (5, 10, 20, 30, and 50 μ g kg⁻¹). Good accuracy (> 91.0%) was obtained for classifying single variety of pistachios contaminated with low concentration of AFB₁ even for 5 μ g kg⁻¹ by linear discriminant analysis (LDA), irrespective of varietal differences. The partial least square regression analysis (PLS) model based on the variation selection method of competitive adaptive reweighted sampling (CARS) presented a considerable predictive precision (root mean square error of prediction (RMSEP) < 6.20 μ g kg⁻¹) for pooled lot using 174–1100 nm at a detection speed of 1 kernel s⁻¹. Despite the preliminary feasibility for detection AFB₁ in pistachio kernels, the on-line LIFS system should be validated further using naturally contaminated samples.