Title	Microstructure changes of sodium carbonate-soluble pectin of peach by AFM during controlled
	atmosphere storage
Author	Hong-Shun Yang, Guo-Ping Feng, Hong-Jie An and Yun-Fei Li
Citation	Food Chemistry Volume 94, Issue 2, January 2006, Pages 179-192
Keyword	Peach; Atomic force microscopy; Controlled atmosphere storage; Pectin; Structure

Abstract

Yellow peaches (*Prunus persicu* L. Batsch.) were stored under controlled atmospheres (CA) of $2\% O_2 + 5\% CO_2$, $5\% O_2 + 10\% CO_2$, $2\% O_2 + 10\% CO_2$, $5\% O_2 + 5\% CO_2$, and normal atmosphere at 2 °C, to investigate the effects of different concentrations of O_2 and CO_2 on the structure of a single sodium carbonate-soluble pectin (SSP) molecule. The microstructure changes, including aggregates and branches, were studied by atomic force microscopy (AFM) at initially, on the 15th and 45th day. The microstructure of SSP molecules and polymers showed that aggregates separated gradually with the storage time. The degradation took place in the linear backbone as well as in side chains. The degradation of SSP molecules was inhibited by lower O_2 and higher CO_2 concentrations. Almost all of the chains were composed of four basic units with widths of 11.719, 15.625, 19.531 and 17.578 nm, which can be visualized and calculated exactly by AFM. This indicated that parallel linkage or intertwist between the basic units was a fundamental characteristic of SSP molecules.