Title	Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh
	after harvest
Author	Chong Cai, ChangJie Xu, Xian Li, Ian Ferguson and KunSong Chen
Citation	Postharvest Biology and Technology Volume 40, Issue 2, May 2006, Pages 163-169
Keyword	Cellulose; Cinnamyl alcohol dehydrogenase; Ethylene; Lignification; Lignin; Loquat; 1-MCP;
	Phenylalanine ammonia lyase; Peroxidase; Postharvest; Senescence

Abstract

Loquat (*Eriobotrya japonica* Lindl.) fruit are non-climacteric and have a short postharvest life. During postharvest ripening over 8 d at 20 °C, fruit firmness increased and showed a positive correlation with accumulation of lignin in the flesh. Among the enzymes associated with lignin synthesis, phenylalanine ammonia lyase (PAL) activity increased rapidly during the first 3 d after harvest and then declined in the fruit flesh, while cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) activities showed a persistent rise over the whole 8 d. Accumulation of lignin in flesh tissue was also positively correlated to activities of CAD, guaiacol-POD (G-POD) and syringaldazine-POD (S-POD). Cellulose content in flesh tissue decreased and showed a significant negative correlation with lignin content. Where fruit ripening was enhanced by ethylene treatment, or retarded by low temperature or use of 1-methylcyclopropene (1-MCP), the inhibitor of ethylene reception, firmness, lignification and the enzyme activities were consistently enhanced or retarded accordingly. Our results suggest that increase in firmness of loquat fruit during ripening is a consequence of tissue lignification, a process associated with increases in PAL, CAD and POD activities, and might involve a coordinated regulation of lignin biosynthesis and cellulose hydrolysis.