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Influence of NAA and MeJA on Color and Quality in Pineapple Fruit cv. Pattavia during Storage
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Abstract

This research aimed to study the effect of auxin (1-naphthaleneacetic acid; NAA) and methyl
jasmonate (MeJA) towards color development (peel and pulp) and changes in the quality of pineapple fruit
cv. Pattavia during storage. The pineapple fruits were immersed in distilled water (control), and in 1,000 uM of
NAA or MeJA solution for 30 min. After treatment, the fruits were placed in baskets and stored at 25+2 °C for
12 days. The results elucidated that immersing in NAA helped to delay ripening by delaying chlorophyll
degradation in the peel (maintained greenness), slowing down the respiration rate, and the accumulation of
carotenoids in the peel and pulp. For MeJA treatment, it stimulated the accumulation of carotenoids in
pineapple pulp. The quality changes included TSS/TA ratio, ascorbic acid contents, and total phenolic
contents, they were non-significant differences in all treatments. In contrast, immersion in NAA or MelA
solution was able to delay the increase in malondialdehyde content in the early period of storage. This
observation indicates that auxin (NAA) can delay the fruit ripening which it is beneficial to exporting pineapple.
MeJA has the effect of stimulating the accumulation of carotenoids in the pulp (more yellow) which is
beneficial to the canned pineapple industry that needs yellow pulp.
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Introduction

Pineapple (Ananas comosus L.) is one of the most economically important tropical and subtropical
crops in Thailand. Pineapples cv. Pattavia are widely planted and have a high economic value for domestic
and export markets both fresh and processed products, especially canned fruit. One of the problems
encountered during the export of pineapples is peel de-greening (yellowing) due to the ripening process,
which shortens their storage life. This issue has a more pronounced impact on export markets. In contrast, for
fresh fruit consumption and the fruit processing industry, consumers and entrepreneurs prefer yellow-colored
pineapple peel and pulp which indicates sweetness. Previous studies have demonstrated that plant
hormones are involved in plant physiology and developments, such as fruit growth and development, seed
germination and plant pigments. Auxin (i.e., IAA and NAA) and MeJA are plant hormones that regulate various
plant physiological processes. The application of IAA and NAA to strawberries resulted in a delay in the
ripening process, which was accompanied by delayed the anthocyanin accumulation, chlorophyll loss and
fruit softening (Given et al., 1988; Ji et al., 2012; Symons et al., 2012). In term of MeJA, it has been shown to
induce fruit ripening, accumulation of pigments, phenolic compounds, antioxidants and sugars (Turner et al.,
2002; Reyes-Diaz et al., 2016). Furthermore, MeJA has been demonstrated to reduce chilling injury symptoms
by inducing plant resistance against pathogens and enhancing the secondary metabolites in several fruits
during stored at a low temperature (Reyes-Diaz et al., 2016). Thus, this research aimed to study the effect of
auxin (1-naphthaleneacetic acid; NAA) and methyl jasmonate (MeJA) on color development (peel and pulp)
and quality changes in pineapple fruit cv. Pattavia during storage. The research outcome will be beneficial for

increasing the price of pineapple for the domestic market and processing industry.

Materials and Methods

1. Plant materials and treatments

Pineapples cv. Pattavia at the commercial stage (145-165 days after induced flowering) were
harvested from Siam Food Products Public Co., Ltd. Fruit of uniform shape, size, and color were selected and
washed with tap water. Afterward, the fruits were dipped into a 200 ppm sodium hypochlorite solution for 5
min to control postharvest decay, and then air dried at 25 °C for 2 hr. The fruits were separated into 3 groups
and immersed in water (control), 1,000 uM NAA, and 1,000 uM MeJA for 30 min. Afterward, the fruits were air-
dried, placed in the baskets, and stored at 25+2 °C, 80-85 %RH for 12 days. Five fruits from each treatment
were randomly sampled, and quality was evaluated on day 0, 3, 6, 9, and 12 of storage. The fruit were
sampled separately for the peel and pulp, and then directly frozen in liquid nitrogen and stored at -20°C until

used.

2. Determination

Changes in the color of fruit from each treatment were measured by colorimeter and reported as AE
(in peel) and b* value (in pulp). Total soluble solids (TSS), titratable acidity (TA), carotenoids, total phenolic
content, ascorbic acid, and malondialdehyde content were measured in the pineapple pulp. The chlorophyll
contents were measured in the pineapple peel. The results are subjected to an analysis of variance (ANOVA)

and the significant differences among means were determined by Tukey's Test (P < 0.05) using SAS software.

Results
To explore the effect of the hormones NAA and MeJA towards color development (peel and pulp)
and changes in the quality of pineapple fruit cv. Pattavia during storage, we found that the color of the

pineapple peel changed from green to yellow during storage, starting from the stem end. As shown in Figure
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1, the results elucidated that the NAA treatment could maintain greenness in the peel, whereas the MelA
treatment induced yellowness in both the peel and pulp. For pineapple peel, the results demonstrated that
the AE values in the fruit treated with NAA were significantly lower than those observed in the other
treatments throughout storage (Figure 2A). For pineapple pulp, the fruit treated with MeJA exhibited the
highest b* value (indicating more yellowness) compared with other treatments on the 6" and 9" days after
storage (Figure 2B). Changes in the color were related to chlorophyll and carotenoid contents in both peel
and pulp. The NAA treatment significantly maintained the decrease of chlorophyll contents in the peel
compared to other treatments on the 6", 9", and 12" days after storage (Figure 2C). In the pulp of pineapple,
the MeJA treatment showed high carotenoid contents than the control fruits and NAA-treated fruits after
storage 3 days (Figure 2D). Regarding fruit quality, including TSS/TA ratio, ascorbic acid contents, and total
phenolic contents, there were no significant differences in all treatments (Figure 3A, B, and Q). In contrast,
immersion in NAA or MeJA significantly delayed the increase in malondialdehyde content on the 3% and 6"
days after storage (Figure 3D). The respiration rate increased throughout the experiment period. NAA-treated
fruits showed significantly lower respiration rates than control fruits and MeJA-treated fruits on the 6" and 9"

days of storage (Figure 3E).

Figure 1 Comparison of the appearance of peel and pulp between MeJA- and NAA-treated fruits and non-

treated fruits (control) during storage at 25 °C.
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Figure 2 Delta E (A) and total chlorophyll contents (C) in pineapple peel, and b* value (B) and carotenoid
contents (D) in pineapple pulp after treatment with water (control), MeJA, and NAA during storage at
25 °C. The Tukey's test was applied to analyze the difference between each treatment at *p < 0.05

and **p < 0.01 levels, error bar represents the average with SE for five replicate samples.



134 Jyisua 7] 55 aUyi] 2 (WiA) 2567 2. IEImIAanSUaYYINNTINAISINYAT

40

0.08

€ e
9 B 0] C
< c
o 45 S 9] 30
E=] o<
o © o & *x
£ 30 g 3 2 20
a 2 g 2 =
A S a
~ 151 @ Control = S 10
&’ MeJA 5 §
01 € NAA = 0
0.00+ . . . .
0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

Days after storage

o
&

-
S

Respiration rate

Malondialdehyde content
(nmol/gFW)
W
o

o
=]

0 3 6 9 12 0 3 6 9 12
Days after storage Days after storage
Figure 3 TSS/TA ratio (A), total phenolic acid content (B), ascorbic acid content (C), malondialdehyde content
(D) in pineapple pulp, and respiration rate (E) in pineapple after treatment with water (control),
MelA, and NAA during storage at 25 °C. The Tukey's test was applied to analyze the difference
between each treatment at *p < 0.05 and **p < 0.01 levels, error bar represents the average with SE

for five replicate samples.

Discussion

Plant hormones are naturally organic compounds that play an important role in the physiological
processes of plants. MelJA is generally known as a regulator involved in various plant growth and metabolic
activities, including root elongation, fruit stress responses, ripening, and carotenoid biosynthesis. Auxin
application suppresses the expression of many ripening-associated genes related to pigmentation, stress
response, cell wall metabolism, and the synthesis of flavors and aroma compounds (Manning, 1994, 1998,
Harpster et al., 1998; Aharoni et al., 2002). In the present study, the application of MeJA resulted in enhanced
fruit ripening, as indicated by high AE and b* values (yellowness) in the peel and pulp. MeJA treatment also
induced chlorophyll degradation in the peel and promoted carotenoid accumulation in the pulp. Similarly,
postharvest application of MeJA induces changes in color by degrading chlorophyll content and enhancing
carotene accumulation in mandarin fruit during storage (Gomez et al., 2017; Baswal et al., 2021). The
expression of MYC2 (transcript factor) was up-regulated by MeJA treatment, resulting in promoting the
expression of genes regulated to the carotenoid biosynthesis, such as PSY, LCYb, BCH, and CCD4b (Yue et al.,
2023). In addition, MeJA was effective at enhancing the stability of cell membranes by inducing antioxidant
enzyme activities, thereby decreasing oxidative levels in lemons (Siboza and Bertling, 2013). On the other
hand, the application of NAA can suppress the color development of the peel and pulp of pineapple by
suppressing chlorophyll degradation in the peel and carotenoid accumulation in the pulp. Moreover, the
membrane degradation was prevented by NAA and MeJA treatments. which also resulted in the maintenance
of the MDA level during the initial period of storage. In a previous study, Chen et al. (2016) demonstrated that
exogenous IAA delayed the ripening process of harvested strawberries by suppressing genes related to pectin
depolymerization, cell wall degradation, sucrose biosynthesis, and anthocyanin biosynthesis. Similarly, applied
NAA to strawberries resulted in a delay in anthocyanin accumulation, chlorophyll loss, and fruit softening
(Given et al. 1988; Ji et al. 2012; Symons et al. 2012). Moreover, auxin (NAA) may inhibit fruit respiration rate
and reduce fruit vitality by down-regulating the expressions of genes associated with the TCA cycle and
oxidative phosphorylation during tomato fruit ripening (Li et al., 2016). This study elucidates that NAA can

delay the pineapple ripening, whereas MelJA can stimulate the pineapple ripening.
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Conclusions
This study indicates that NAA can delay fruit ripening, which is beneficial for exporting pineapple.
MeJA can stimulate ripening, which is advantageous for the canned pineapple industry that requires yellow

pulp.
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